Fifth Semester B.Sc. Degree Examination, October/November 2019

(CBCS Scheme)

Mathematics

Paper 5.1 - ADVANCED ALGEBRA AND NUMERICAL METHODS

Time: 3 Hours

[Max. Marks: 90

Instructions to Candidates:

- 1. Answers ALL the questions.
- 2. Answer should be written completely in English.

PART - A

I. Answer any SIX of the following:

 $(6 \times 2 = 12)$

- 1. Define skew field. Give an example for a skew field.
- 2. Show that $S = \left\{ \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \middle/ a, b \in z \right\}$ is a subring of $M_2(Z)$.
- 3. If I be a ideal of a ring R with unity $l \in I$ then prove that I = R.
- 4. Define vector space over a field F.
- 5. Prove that the set of vectors of V(F) containing the zero vector is linearly dependent,
- 6. Solve the equation $x^3 4x 9 = 0$ in (2, 3) by bisection method in two steps.
- 7. Explain Jacobi-iteration method to solve the system of three equations.

PART - B

II. Answer any SIX of the following:

 $(6 \times 3 = 18)$

- 8. Let $(R, +, \cdot)$ be a ring $\forall a \in R$, then prove that $a \cdot 0 = 0 \cdot a = 0$ where 0 is the additive identity.
- 9. Show that $S = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \middle/ a, b \in Z \right\}$ is neither left ideal nor right ideal.

Q.P. Code - 42533

- 10. Prove that Kernel of homomorphism of ring is a subring.
- 11. Show that $W = \{(x,0,0) \mid x \in R\}$ is a subspace of $V_1(R)$.
- 12. If $T:V_3(R) \to V_3(R)$ defined by T(x,y,z) = (0,y,z) then show that T is a linear transformation.
- Find the cube root of 54 correct to three places of decimal by Newton-Raphson method.
- 14. Solve the equations 10x + y + z = 12, 2x + 10y + z = 13, 2x + 2y + 10z = 14 by Gauss-Seidal iteration method up to three iterations.

PART - C

III. Answer any FOUR of the following:

- $(4 \times 5 = 20)$
- 15. Prove that the ring of integers module 'n' $(z_n, +_n, X_n)$ is an integral domain if and only if 'n' is a prime number.
- 16. Let $(R, +, \cdot)$ be a ring, a non empty set S of a ring R is a subring of R then prove that
 - (a) $\forall a, b \in S \Rightarrow a b \in s$
 - (b) $\forall a,b \in S \Rightarrow a \cdot b \in S$.
- 17. If $f: R \to R'$ be a homomorphism with Kernel k then prove that f is one-one iff $K = \{0\}$.
- 18. If I be an ideal of a ring R then prove that
 - (a) R is a commutative then R/I is also commutative
 - (b) If R has unity then R/I is also unity.
- 19. State and prove fundamental theorem of homomorphism of rings.

PART - D

IV. Answer any FOUR of the following :

- $(4 \times 5 = 20)$
- Prove that the intersection of any two subspaces of a vector space is also a subspace but the union of two subspaces need not be subspace.
- 21. Express the vectors (2,-5,-1) as a linear combination of the vectors (1,2,3), (2,1,1) and (1,3,2) of $V_1(R)$.

- 22. Prove that in an n-dimensional vector space V(F)
 - (a) any (n+1) vectors of V are linearly dependent
 - (b) no set of (n-1) elements can span V.
- 23. Find the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ such that T(-1, 1) = (-1, 0, 2) and T(2, 1) = (1, 2, 1).
- 24. Find the range space, null space, rank and nullity of a linear transformation $T: V_3(R) \to V_2(R)$ defined by T(x, y, z) = (y x, y z).

PART - E

V. Answer any FOUR of the following:

 $(4 \times 5 = 20)$

- 25. Solve the equation $x^3 x^2 x 3 = 0$ over (2, 2.5) by Newton-Raphson method correct to three places of decimal.
- 26. Solve the equation $x^4 x 10 = 0$ has one root between 1.8 and 2 correct to three places of decimal by Regula-Falsi method.
- 27. Solve the following equations by Gauss elimination method. $2x_1 + 4x_2 + x_3 = 3$, $3x_1 + 2x_2 2x_3 = -2$ and $x_1 x_2 + x_3 = 6$.
- 28. Apply Euler's modified method to find y for x = 0.05 for the equation $\frac{dy}{dx} = x + y$ with y(0) = 1.
- 29. Apply Runge-Kutta method to solve the equation $\frac{dy}{dx} = 1 + \frac{y}{x}$ with y(2) = 2 for x = 2.1.

